Application of Malliavin calculus to stochastic partial differential equations
نویسنده
چکیده
The Malliavin calculus is an infinite dimensional calculus on a Gaussian space, which is mainly applied to establish the regularity of the law of nonlinear functionals of the underlying Gaussian process. Suppose that H is a real separable Hilbert space with scalar product denoted by 〈·, ·〉H . The norm of an element h ∈ H will be denoted by ‖h‖H . Consider a Gaussian family of random variables W = {W (h), h ∈ H} defined in a complete probability space (Ω,F , P ), with zero mean and covariance E(W (h)W (g)) = 〈h, g〉H . The mapping h → W (h) provides a linear isometry of H onto a closed subspace of H1 of L(Ω).
منابع مشابه
Malliavin Calculus Applied to Optimal Control of Stochastic Partial Differential Equations with Jumps
In this paper we employ Malliavin calculus to derive a general stochastic maximum principle for stochastic partial differential equations with jumps under partial information. We apply this result to solve an optimal harvesting problem in the presence of partial information. Another application pertains to portfolio optimization under partial observation.
متن کاملApplication of DJ method to Ito stochastic differential equations
This paper develops iterative method described by [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve Ito stochastic differential equations. The convergence of the method for Ito stochastic differential equations is assessed. To verify efficiency of method, some examples are ex...
متن کاملOnWeak Convergence, Malliavin Calculus and Kolmogorov Equations in Infinite Dimensions
This thesis is focused around weak convergence analysis of approximations of stochastic evolution equations in Hilbert space. This is a class of problems, which is sufficiently challenging to motivate new theoretical developments in stochastic analysis. The first paper of the thesis further develops a known approach to weak convergence based on techniques from the Markov theory for the stochast...
متن کاملAbsolute continuity for some one-dimensional processes
We introduce an elementary method for proving the absolute continuity of the time marginals of one-dimensional processes. It is based on a comparison between the Fourier transform of such time marginals with those of the one-step Euler approximation of the underlying process. We obtain some absolute continuity results for stochastic differential equations with Hölder continuous coefficients. Fu...
متن کاملMalliavin Calculus for Backward Stochastic Differential Equations and Application to Numerical Solutions
In this paper we study backward stochastic differential equations with general terminal value and general random generator. In particular, we do not require the terminal value be given by a forward diffusion equation. The randomness of the generator does not need to be from a forward equation, either. Motivated from applications to numerical simulations, first we obtain the Lp-Hölder continuity...
متن کاملThe Substitution Theorem for Semilinear Stochastic Partial Differential Equations
Abstract. In this article we establish a substitution theorem for semilinear stochastic evolution equations (see’s) depending on the initial condition as an infinite-dimensional parameter. Due to the infinitedimensionality of the initial conditions and of the stochastic dynamics, existing finite-dimensional results do not apply. The substitution theorem is proved using Malliavin calculus techni...
متن کامل